Lineer cebirde, n boyutlu birim matris, ana köşegeni birlerden ve diğer elemanları sıfırlardan oluşan n × n boyutlu bir kare matristir. I<sub>n</sub> ya da sadece I ile gösterilir.12 Kuantum mekaniği gibi bazı alanlarda, birim matris kalın bir rakamı 1 ile de gösterilir. Nadiren, bazı kitaplarda İngilizce ve Almanca kelimelerin baş harfleri olan U ()3 ya da E ()4 ile gösterildiği olur.
<math>I_1 = \begin{bmatrix} 1 \end{bmatrix} ,\ I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} ,\ I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} ,\ \cdots ,\ I_n = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}. </math>
m×n boyutlu bir A matrisi için, birim matrisle çarpımın sonucu şöyledir:
I<sub>m</sub>A = A**I<sub>n</sub> = A.
Orijinal kaynak: birim matris. Creative Commons Atıf-BenzerPaylaşım Lisansı ile paylaşılmıştır.
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page